Abstract title: HLA-C haplotypes distribution among gametes donors in our population

D. Alecsandru 1, C. Iglesias 2, A. Pacheco 1, A. Barrio 1, N. Garrido 2, J. García-Velasco 4.
1IVI Madrid, Department of immunology and department of reproductive endocrinology and infertility, Madrid, Spain.
2IVI Madrid, Andrology department, Madrid, Spain.
3IVI Foundation Director, Research administration and innovation, Valencia, Spain.
4IVI Madrid. Rey Juan Carlos University. Hospital Universitario La Paz- Madrid., Department of immunology and department of reproductive endocrinology and infertility, Madrid, Spain.

Study question: HLA-C haplotypes distribution among gametes donors in Caucasian population

Summary answer: Among oocyte donors, 37.5% have an HLA-C1C1 haplotype, and very similar among sperm donors 32%.

What is known already:
Increased risk of recurrent miscarriage (RM), preeclampsia and fetal growth restriction has been described in mothers KIR AA when the fetus has more HLA-C2 genes than the mother with a higher incidence in oocyte donation pregnancies compared to spontaneous conception or IVF pregnancies. In oocyte donation, the oocyte HLA-C behaves as the paternal HLA-C increasing the number of non-self-antigens presented to the mother´s uterine immune cells. This KIR-HLA-C combination is still not considered nowadays in the process of donor selection. KIR AA patients have lower live birth rates (LBR) after double embryo transfer (DET) oocyte-donation, especially with HLA-C2 partner.

Study design, size, duration:
Between April 2015 and October 2017, we performed a prospective study that included 783 gametes donors matched for couples with recurrent miscarriage or recurrent implantation failure of unknown etiology. We performed HLA-C typing for 683 oocytes donors and for 100 sperm donors.

Participants/materials, setting, methods:
All the donors were selected from IVIRMA Clinics, and showed a normal karyotype, negative serology and fulfilled our standards for gamete donation. We did genetic typing for HLA-C after obtaining signed informed consent. HLA-C haplotype distribution among oocytes and sperm donors in our Caucasian Spanish population was analyzed.

Main results and the role of chance:
In our cohort of 683 oocytes donors, we observed a 37.5% HLA-C1C1 haplotype (N= 256), 47.7% HLA-C1C2 and 14.8% HLA-C2C2. Among the sperm donor cohort, HLA-C haplotype distribution was 32% for HLA-C1C1, 50% for HLA-C1C2 and 18% for HLA-C2C2.

Knowing the HLA-C distribution in our gametes donors might be helpful as LBR is lower when women KIR AA received a C2 donor, especially when they have a HLA-C2 partner and the embryo has more HLA-C2 antigens than the mother. This first study, observed a 32-37% of HLA-C1C1 frequency among gametes donors in our population. Those KIR-HLA-C mismatched couples affected by recurrent miscarriage or recurrent implantation failure may benefit from this approach.

Limitations, reasons for caution:
The study’s objective was to describe the HLA-C distribution among our donors cohort and the frequency of what we may consider the “best” haplotype, HLA-C1C1. This is the first study observing the HLA-C distribution among gametes donors and represent useful data.

Wider implications of the findings:

It’s believed that completing a normal pregnancy is possible only for KIR AA mothers who carry a baby with at least one non–self HLA-C1. During oocyte donation, the KIR-HLA-C mismatch increases compared to own oocytes. Therefore, selecting HLA-C1 among donors could be more efficient and safer, for specific couples.

Trial registration number:

not applicable

Keywords:

HLA-C
miscarriage
implantation
gamets
haplotypes